"g is for genes, another branching tree from a root in the past to a huge diversity seeing this from timelessness we learn the connection of all living things -- through time in each direction"
"h is for hypercube, a way for us to see a higher dimension than our usual three watch as it turns and try to imagine a shape in four dimensions, moving through time 3D sections, all in a line to make a 4D object, like a spime"
Bruce Sterling coined the word "spime" to refer to the data set representing an object's existence in space and time - Wal-mart, for instance, is famous for being able to keep such detailed information about everything in their inventory across all their stores, so the data representing a pair of pants on a shelf in a specific store would include the record of when and where those pants were created, how and when and through what path they were transported, and so on... and that entire data set would represent that pair of pants as a space-time object - a "spime". Visualizing the connection between hypercubes (a 4D cube), each of us as a "long undulating snake", and Bruce Sterling's concept of the "spime" is an important key to thinking about our reality. Which leads us to our next letter.
"information and reality equal each other, can this be?
if information (a word that starts with i) equals reality, try to visualize how patterns and shapes that flow within and behind and around create what we're in energy or mass, genes, memes or spimes waves and shapes, fractals and lines
i is also for indeterminacy the unobserved state that underlies reality where all possible states enfold together and find their balance -- in perfect symmetry"
By now I hope it's clear to everyone that these poems are the text equivalent of a fugue - themes keep restating themselves, recombining with other themes, creating an overall structure that is larger than the single elements used in its construction. When I first saw quantum physicists using the phrase "information equals reality" I immediately embraced it - it sums up the way of visualizing reality we're playing with in the project, and the field of Digital Physics definitely ties into this idea as well. My song "The Unseen Eye" expressed the same idea, although I wrote that song many years before I heard the phrase "information equals reality" which sums this large idea up so compactly. Here's a video for "The Unseen Eye":
and here's the first verse and chorus of this song, written back in 2002, and with many themes that connect strongly to what we've been talking about here as we work through our Omniverse Alphabet:
In the universe of all universes Anything is possible Everything has happened, and will happen again In the universe of all universes Grey and formless Till you choose a point, to become the first -- when You can think of it as data This dark and shapeless void Unrealized potential In the static and the noise Till in the universe of all universes The unseen eye Opened and collapsed the wave, and we entered on in
Now we know it’s the act of observation That gives the world its how and why So the big bang is just an illusion It’s just the opening of the unseen eye
"j is for John Wheeler, a famous physicist who drew a strange eyeball looking at its tail as a way to imagine how some branches or our line might be changed in the past as we look back from today so the branching tree that extends from now is even more surprising: it branches either way!"
"a is for alpha, the very beginning a letter that stands for whatever comes first a is for alpha, the fine structure constant that locks in our universe"
In entries like The Statistical Universe, The Map and the Territory, The Long Undulating Snake, and Alien Mathematics, we've talked about the cosmologists who tell us that there are a great many other universes out there beyond our own, and each of those universes would have their own unique structures that make them completely different from our own, with basic physical laws that would make it impossible for life as we know it to function. The wikipedia article on alpha, the fine structure constant, explains this idea further.
"b is for the big bang, the highly ordered big bang from the omniverse of timelessness and unobserved states with the big bang our universe is chosen is the big bang an illusion? some say maybe so perhaps it’s better calling it the first yes and no rising from the chaos of the background noise we can look back from now and see the very first choice the big bang shows how our universe came to be selected from the background—of indeterminacy"
The idea that the incredible expansion of the big bang may have more to do with the selection processes that chose our universe rather than being an event that really happened was one of the radical ideas proposed in my first book, where I said this:
The currently accepted version of the big bang is known as “inflationary cosmology”, in which it is proposed that the size of the universe increased by a factor greater than a million trillion trillion in less than a millionth of a trillionth of a trillionth of a second. Does this mind-boggling amount of sudden inflation not sound more like the flipping of a gigantic yes/no toggle switch?
Thinking of the big bang not as a real event but rather as an observed side effect of the selection process that chose our universe from out of the multiverse landscape of all possible universes is an idea that is beginning to be supported by some mainstream scientists, and in particular the field of digital physics. I've discussed this in blog entries like God 2.0, The Big Bang is an Illusion, The Flexi-Laws of Physics, and What's South of the South Pole?.
With O is for Omniverse, my aim is to distill the ideas we've been talking about with my project into something that appeals more to intuitive/right brain people. The above commentary is for the left brain/analytical thinkers who might be thinking that O is for Omniverse is a simple children's book, when it's much more than that. There is a lot of deep information encapsulated into the images and text of this book, something that even you left brain thinkers will enjoy once you start to delve into what's being discussed more deeply.
Last time, in "A Hug From Another Dimension", we returned to Edwin Abbott's imaginary 2D creatures, the flatlanders, and the idea that a 3D person passing through the flatlander's plane would appear very strange indeed to the flatlander. It has been rightly pointed that in my original 11 minute animation I show the flatlander world not as they would see it, but as we would see it viewing from "above" their plane. While that perspective is boggling enough, the "lines all in the same plane" that a flatlander would really see is even more difficult for people new to these concepts to try to imagine.
Why do we talk about flatlanders? Because with this project we're talking about spatial dimensions: the ways that our 3D reality relates to the flatlander's 2D reality gives us some useful clues to the relationship between any spatial dimension and the next. Since the extra dimensions beyond spacetime that physicists talk about are all spatial dimensions (or "space-like" as some prefer to say), thinking about how the simplest spatial dimensions relate one to another gives us tools for imagining the more complex ones. The key to remember with all this is that each additional spatial dimension is at "right angles" to the one before: so each new dimension allows an observer to see "around the corner" in a way that was unattainable from the previous dimension. This time, let's work through the dimensions with that idea in mind.
0
We start with a point of indeterminate size. We can imagine this point to be any size we choose, and it can exist in any dimension. Let's say that's all you really are - a point. What will it be like for you to exist within each of the spatial dimensions?
1
You are a point on a one dimensional line. You can look in either direction on your line, but whatever's nearest to you obscures your ability to see anything beyond. If there were nothing else on your line to get in the way, you would be looking towards infinity in either direction.
What if you wanted to see what lies beyond any nearby objects on your line? You would need a way to move on your line. For you, "time" would be a direction in the second spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" to what lies beyond. Think about what the third dimension would be like for you on this one dimensional line - it would be omni-directional, all around you.
2
Now you're a point on a two-dimensional plane. You can look in four directions on your plane, and the new directions are at "right angles" to the previous ones. If there were nothing else on your plane, you would be looking towards infinity in four directions.
What if there were nearby objects that were obstructing your view and you wanted to see around them? You would need a way to move within your plane. For you, "time" would be a direction in the third spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" to what lies beyond. Think about what the fourth dimension would be like for you on this two dimensional plane - it would be omni-directional, all around you.
3
Now you're a point within a three-dimensional space. You can look in six directions from within your space, and the new directions are at "right angles" to the previous ones. If there were nothing else within your space, you would be looking towards infinity in six directions.
What if there were nearby objects that were obstructing your view? Since we're already living in a 3D world, this is the easiest for us to picture. If that object were a building, for instance, and you wanted to see what was on the other side of the building, you would need a way to move within your space. For you, "time" would be a direction in the fourth spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" to what lies beyond. Think about what the fifth dimension would be like for you within this three dimensional space - it would be omni-directional, all around you.
Up to now this has been fairly simple to visualize, because we're so familiar with these dimensions from our basic day-to-day experience. But this logic continues to work all the way up. Understanding what that means to us is an important key to understanding the connections between the quantum world, Everett's Many Worlds Interpretation, and the multiverse landscape.
4
Now you're a point within a four-dimensional "hyperspace". You can look in eight directions from within your hyperspace and the new directions are at "right angles" to the previous ones. If there were nothing else within your hyperspace, you would be looking towards infinity in eight directions.
What if there were nearby objects that were obstructing your view and you wanted to see around them? You would need a way to move within your hyperspace. For you, "time" would be a direction in the fifth spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" to what lies beyond. Think about what the sixth dimension would be like for you within this four dimensional hyperspace - it would be omni-directional, all around you.
If we think of the quantum wave function for our spacetime as existing within the fourth spatial dimension, we are in one of the "worlds" of Everett's Many Worlds Interpretation, and another phrase for what obstructs our view beyond our spacetime would be the cosmological horizon. For people who believe there is nothing more than the fourth dimension, it can be easy to assume that free will does not exist and that there is only one "world", one inevitable version of our universe which exists from its beginning to its end. If there's really nothing more beyond the fourth dimension then we are all like riders on a train, unable to change whatever we're about to observe. What if we wanted to get off that train track and see what lies beyond, see what other "parallel universe" versions of our universe are out there? The same logic continues to apply, so that's the fifth dimension. Because those other worlds are causally connected to our current one by the probabilities of the quantum wave function along with the choices that are made, let's call the fifth dimension our "probability space".
5
Now you're a point within a five-dimensional probability space. You can look in ten directions from within your probability space and the new directions are at "right angles" to the previous ones. If there were nothing else within your probability space, you would be looking towards infinity in ten directions.
What if there were nearby objects that were obstructing your view and you wanted to see around them? You would need a way to move within your probability space. For you, "time" would be a direction in the sixth spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" and see what lies beyond. Think about what the seventh dimension would be like for you within this five dimensional probability space - it would be omni-directional, all around you.
So what does "obstructing your view" mean when we're in a five dimensional probability space? Here's a couple of examples. Because the probabilistic outcomes for our universe's wave function of possible state are causally connected, no matter where we are in the fifth dimensional version of our universe there are going to be parallel universe versions which are "around the corner" and can't be seen from our current position. For instance, the version of our universe where it's 2010 and Elvis is still alive must exist within the set of all possible states, but no amount of choice or chance will allow us to see that version from here - it's just like our inability to see what lies on the other side of a building, we need to use the next dimension up to move to a different position if we want to be able to see that version of our universe. Also, quantum physicists talk about the wave function of our universe including the possibility of extremely unlikely events -- like one of us now disappearing here and reappearing on the moon. Why do we never see such events? Because they are like seeing the other side of a building: we need to move through the sixth dimension to be able to see that version of our universe, because those events lie outside of our cosmological horizon.
For we spacetime creatures our actual "now" is always really a point in the fifth dimension, being observed one planck frame at a time. This is why physicists suggest that the fifth dimension is "curled up at the planck length": not because the fifth dimension is small, but because the granular nature of spacetime only allows us to view the fifth dimension through our tiny little planck-length window. We look around us and see what feels like a solid, continuous reality, but physicists are now proving that this is an illusion. The fact that our spacetime reality is divided into planck-length "frames" is also part of the recent theories suggesting that our 4D universe is actually the shadow of a 5D hologram!
Now, as we move on to think about the sixth dimension we are thinking about the wave function for All Possible States for our particular universe. This wave function includes all the possible states for our universe, including those which are not causally connected to each other: the version of universe where it's 2010 and dinosaurs aren't extinct should have some possibility of existing, but that version is not connected to our own version of 2010. Because both chance and choice are participants in choosing what version of the universe we observe, this 6D space for our universe also would include versions of the universe that each of us would never choose to observe (like the one where I go crazy and kill my neighbors). And as we said, it also includes the states which we can't observe because the event is so unlikely it would take longer than the existence of the universe for the event to occur (like the version where one of us now disappears from here and reappears on the moon).
6
Now you're a point within a six-dimensional wave function space. You can look in twelve directions from within your wave function space and the new directions are at "right angles" to the previous ones. If there were nothing else within your wave function space, you would be looking towards infinity in twelve directions.
What if there were nearby objects that were obstructing your view and you wanted to see around them? You would need a way to move within your wave function space. For you, "time" would be a direction in the seventh spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" and see what lies beyond those nearby obstructions. Think about what the eighth dimension would be like for you within this sixth dimensional wave function space - it would be omni-directional, all around you.
What's outside of our wave function space? By the time we've imagined every possible state for our universe, no matter how unlikely some of those states might be, haven't we got everything covered? In other words, what's hidden from view within a point in the sixth dimension? Now we're starting to think about the multiverse landscape of other universes with different basic physical laws from our own. Up to now, no matter how we twisted and turned in the dimensions we were in, we were always confined to our universe, with its specific value for gravity, its specific planck length and speed of light. To look "around the corner" and see one of those other universes, we need to move through the seventh dimension.
7
Now you're a point within a seven-dimensional multi-universe space. You can now look in fourteen directions, and the new directions are at "right angles" to the previous ones. If there were nothing else within your multi-universe space, you would be looking towards infinity in fourteen directions.
What if there were nearby objects that were obstructing your view and you wanted to see around them? You would need a way to move within your space. For you, "time" would be a direction in the eighth spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" and see what lies beyond. Think about what the ninth dimension would be like for you within this seventh dimensional space - it would be omni-directional, all around you.
String theory suggests that our universe is embedded in a seventh-dimensional "brane". What if you moved to a different seventh dimensional brane to observe a completely different universe? Would that be the same as moving to a different 7D "point" within this way of visualizing the dimensions? That's what I'm suggesting. A different "point" might define a universe with a different strength for gravity, or a different speed of light. So once we defined any arbitrary second "point" there would be a line that passes through our point and this second one, but there would still be a huge number of other universes that would not be on the unique line we had just created. To get to those other universes not on our 7D "line" (a line that exists within a space defined by 7 pairs of directions all at right angles to each other!) would require us to travel through the 8th dimension. By the time we get to the 8th dimension, then, we are able to consider all possible universes that could have a physical expression, so what we're talking about by now is also sometimes called the "multiverse landscape".
8
Now you're a point within an eight-dimensional multiverse space. You can look in sixteen directions from within your multiverse space and the new directions are at "right angles" to the previous ones. If there were nothing else within your space, you would be looking towards infinity in sixteen directions.
What if there were nearby objects that were obstructing your view and you wanted to see around them? You would need a way to move within your space. For you, "time" would be a direction in the ninth spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" and see what lies beyond. Think about what the tenth dimension would be like for you within this eight dimensional space - it would be omni-directional, all around you.
Although Garrett Lisi's E8 rotation is not usually described as being a way to represent actual spatial dimensions, I think it's fascinating that his theory also suggests that interlocking 8 dimensional patterns would be able to describe any particle in our universe. What do we need to go beyond the 8th dimension for? Because there are still other ways of organizing the information that becomes reality that don't actually become physical realities (for more about the "Information Equals Reality" concept, look up digital physics).
That's why it's useful to think of the ninth dimension as being our information space.
9
Now you're a point within a nine-dimensional information space. You can look in eighteen directions from within your information space and the new directions are at "right angles" to the previous ones. If there were nothing else within your information space, you would be looking towards infinity in eighteen directions.
What if there were nearby objects that were obstructing your view and you wanted to see around them? You would need a way to move within your space. For you, "time" would be a direction in the tenth spatial dimension, and it would be what you use to change from state to state, from position to position, which would allow you to see "around the corner" and see what lies beyond. But because there are no actual physical objects within this nine-dimensional space, only information patterns, things are much more open-ended here, and in that sense the tenth dimension is also all around, and omni-directional to the ninth dimension.
In this way of visualizing the dimensions, we sometimes talk about the ninth dimension as being where the "big picture memes" reside: these would be the general organizing patterns that could result in a universe as specific as ours, or it could be an organizing pattern that expresses a preference towards one kind of order over another, or one kind of universe over another. Michael Shermer, well-known editor of Skeptic Magazine, has said that he is quite willing to accept this as a new way of thinking about what "God" could really be - an organizing pattern that chooses one kind of universe over another.
10
Now you're a point of indeterminate size in the tenth dimension, which some people call the Omniverse. As soon as you try to move, or observe any aspect of the Omniverse, you are spilled back into the dimensions below. In that sense, the tenth dimension is the infinity that all of our other directions were pointing towards, no matter what direction and no matter what dimension we were considering.
The tenth dimension as described in this way of visualizing the dimensions is "outside the system" in the sense that Gödel used the phrase. It's the unobserved wave function of all possible information states, all patterns, all universes, and it's the enfolded symmetry state that exists both "before" and "after" our universe or any other, as physicist Sean Carroll likes to say. As Gevin Giorbran described it, it's also like a big, beautiful, perfectly balanced "zero" which is not empty, but full of all the other possible states. This means that our universe, like any others, is just a temporary deviation from that symmetry, and symmetry breaking is what makes any universe more interesting than this unobserved whole.
I hope you've enjoyed our tour of the ten dimensions, a logical presentation of ideas that I believe will one day be embraced by mainstream science. In the meantime, even though this is not what you would currently be taught in a university physics class, the five million unique visitors who've been to the tenth dimension website show me that a great many people see resonances and connections between this approach and their own understanding of how reality works, and for that I'm truly grateful.
Thanks and enjoy the journey!
Rob Bryanton
PS - here's a classic clip from Carl Sagan showing us his introduction to the Edwin Abbott concept of 2D flatlanders.
Poll 46: "Many of the great physicists have said that "time is an illusion". In the same sense, does that mean the big bang is an illusion?" 47.9% agreed, while 52.1% disagreed. Poll ended August 20, 2009.
One of the quotes I've used most often with this project was this one from Einstein: " this separation between past, present, and future is only an illusion". Did Einstein accept that time was an illusion, and that there is a way of viewing our reality "outside" of time where everything happens simultaneously? You bet!
As regular readers of my blog will know, I was entrusted with the care of Gevin Giorbran's book "Everything Forever: Learning to See Timelessness" after his untimely death last year. Here's a blog from Gevin's website, everythingforever.com (which I am now paying to keep running as a tribute to Gevin's great ideas) which explores Einstein's attitude towards timelessness in much more detail:
Albert Einstein and the Fabric of Time
Surprising as it may be to most non-scientists and even to some scientists, Albert Einstein concluded in his later years that the past, present, and future all exist simultaneously. In 1952, in his book Relativity, in discussing Minkowski's Space World interpretation of his theory of relativity, Einstein writes:
Since there exists in this four dimensional structure [space-time] no longer any sections which represent "now" objectively, the concepts of happening and becoming are indeed not completely suspended, but yet complicated. It appears therefore more natural to think of physical reality as a four dimensional existence, instead of, as hitherto, the evolution of a three dimensional existence.
Einstein's belief in an undivided solid reality was clear to him, so much so that he completely rejected the separation we experience as the moment of now. He believed there is no true division between past and future, there is rather a single existence. His most descriptive testimony to this faith came when his lifelong friend Besso died. Einstein wrote a letter to Besso's family, saying that although Besso had preceded him in death it was of no consequence, "...for us physicists believe the separation between past, present, and future is only an illusion, although a convincing one."
Most everyone knows that Einstein proved that time is relative, not absolute as Newton claimed. With the proper technology, such as a very fast spaceship, one person is able to experience several days while another person simultaneously experiences only a few hours or minutes. The same two people can meet up again, one having experienced days or even years while the other has only experienced minutes. The person in the spaceship only needs to travel near to the speed of light. The faster they travel, the slower their time will pass relative to someone planted firmly on the Earth. If they were able to travel at the speed of light, their time would cease completely and they would only exist trapped in timelessness. Einstein could hardly believe there were physicists who didn’t believe in timelessness, and yet the wisdom of Einstein's convictions had very little impact on cosmology or science in general. The majority of physicists have been slow to give up the ordinary assumptions we make about time.
The two most highly recognized physicists since Einstein made similar conclusions and even made dramatic advances toward a timeless perspective of the universe, yet they also were unable to change the temporal mentality ingrained in the mainstream of physics and society. Einstein was followed in history by the colorful and brilliant Richard Feynman. Feynman developed the most effective and explanatory interpretation of quantum mechanics that had yet been developed, known today as Sum over Histories.
Just as Einstein's own Relativity Theory led Einstein to reject time, Feynman’s Sum over Histories theory led him to describe time simply as a direction in space. Feynman’s theory states that the probability of an event is determined by summing together all the possible histories of that event. For example, for a particle moving from point A to B we imagine the particle traveling every possible path, curved paths, oscillating paths, squiggly paths, even backward in time and forward in time paths. Each path has an amplitude, and when summed the vast majority of all these amplitudes add up to zero, and all that remains is the comparably few histories that abide by the laws and forces of nature. Sum over histories indicates the direction of our ordinary clock time is simply a path in space which is more probable than the more exotic directions time might have taken otherwise.
Other worlds are just other directions in space, some less probable, some equally as probable as the one direction we experience. And some times our world represents the unlikely path. Feynman's summing of all possible histories could be described as the first timeless description of a multitude of space-time worlds all existing simultaneously. In a recent paper entitled Cosmology From the Top Down, Professor Stephen Hawking of Cambridge writes; “Some people make a great mystery of the multi universe, or the Many-Worlds interpretation of quantum theory, but to me, these are just different expressions of the Feynman path integral.”
(below is not in book)
What is still not quite resolved in modern physics is how to properly combine Quantum theory with Einstein's Relativity Theory. It appears evident that time is purely a direction in space but how then do we explain the uncertainty of quantum mechanics? Why does it appear that God plays dice with the world. The two theories, each having been proven by their usefulness, do of course tell the same story about this one universe, but we just haven't learned yet to hear the story right. The best modern theory going is probably the No Boundary Proposal, put fourth by Stephen Hawking and Jim Hartle. This theory introduces a second reference of time which has been inappropriately named Imaginary time. Hawking, writes of the no boundary proposal, "The universe would be completely self contained and not affected by anything outside itself. It would neither be created nor destroyed. It would just BE."
In my book Everything Forever, and here at my website, I explain how fourth dimensional spatial directions travel through a series of independent three dimensional block-like spaces, which in science we call states, but they can also be thought of simply as patterns.Hawking has already proposed that imaginary time can be found at right angles to ordinary time. I further explain that it is possible in an objective way to understand the universe to be like a book or a movie film. Each moment is a separate universe just like each frame of a movie or page of a book is separate. Yet those separate states simultaneously form the larger whole of the movie or the book. Seeing each moment as a continually existing place sheds light on why particles would then travel as a quantum wave, rather than linearly from point a to point b. This is explained better elsewhere, but if each moment of ordinary time is a solid, static, "block of now", or field of space, then time each new moment is a distinctly different universe. What we call time is a spatial direction that travels through many static three dimensional universes.
In such a model, what we call time is created purely out of space. Special directions in space travel through each static three dimensional space, therein producing a new realm of space beyond three dimensions, which we call time. The interesting quality this produces, is how the inhabitants of this fourth dimension of space travel a linear path from past to future, but the surrounding environment of each path is shifting from one pattern to the next. This sends particles from one position in four dimensional space to the next without moving linearly. As a result, each individual observer in the fourth dimension experiences a continuous linear time, even though everything in their immediate environment is moving sequentially from place to place. Hence each temporal environment of four dimensional space is constructed relative to each independent observer.
One can imagine oneself smoothly traveling a direct and interconnected path through time, but in looking around at one's environment, one sees that all other directions of time are broken, causing particles to appear to sequentially leap from one place to another. Paradoxically, everyone observes their own path and experience of time to be linear, while all else around them is sequential. In fact, when we explore time as a direction through many 3D spaces, we find qualities of curvature, time dilation, and spatial contraction, precisely as relativity describes those qualities within our own spacetime.
There is one quote I have found from Einstein which is more or less a contemplative mental thought about the notion of infinite spaces, which doesn't directly relate to my own approach of describing a shape to all possible spaces, but it does at least open up the subject of an infinite number of spaces to speculation. And it also shows the open minded nature of Einstein's thoughts about empty space, which some have thought were closed.
When a smaller box s is situated, relativity at rest, inside the hollow space of a larger box S, then the hollow space of s is a part of the hollow space of S, and the same "space," which contains both of them, belongs to each of the boxes. When s is in motion with respect to S, however, the concept is less simple. One is then inclined to think that s encloses always the same space, but a variable part of the space S. It then becomes necessary to apportion to each box its particular space, not thought of as bounded, and assume that these two spaces are in motion with respect to each other...
Before one has become aware of this complication, space appears as an unbounded medium or container in which material objects swim around. But it must be remembered that there is an infinite number of spaces, which are in motion with respect to each other...
The concept of space as something existing objectively and independent of things belongs to pre-scientific thought, but not so the idea of the existence of an infinite number of spaces in motion relatively to each other. This latter idea is indeed unavoidable, but is far from having played a considerable role even in scientific thought.
I can testify that Einstein's speculations revealed here concerning infinite spaces in motion do at least carry us in the right direction in how they suggest space might have an unseen and possibly infinite content. Similar ideas were introduced by David Bohm, who claimed there are two kinds of order in nature, what he called explicate order and implicate order. Implicate order for Bohm was a way of acknowledging how quantum mechanics reveals a hidden order where our world is influenced by the whole of all possible states. However, that order is much more visible than Bohm ever realized, as explained in part two.
Unfortunately it wasn't until Einstein died that scientists began to consider the Many Worlds Theory in science. It's safe to say that in Einstein's time we were still getting used to the idea of the Big Bang, adjusting to the ever more visible vast sea of other galaxies, and the possibility of alien life on other planets. The universe and reality were still primarily considered purely solid and material based. Quantum theory, which eventually led to the theory of many worlds, had not yet fully withstood the test of time. Einstein even rejected its implications, saying "God does not play dice" with the world, even as he himself established that there is more to the universe than a single evolving moment of now.
In my explorations of timelessness I reveal that ordinary space is not merely full of other empty spaces, but empty space is actually the whole of all physical realities; all the universes of the many worlds theory. Profound as it may be, if the theories I propose are correct, space is full, rather than empty. Material things are less than the fullness of space. In fact, it may be that space must include all possibilities in order to seem empty to us. So in summary, the universe we see is just a fragment nested in a timeless (everything) whole, rather than a single material world magically arisen above some primordial nothing. All universes exist without beginning or end in the ultimate arena of time, and each moment we experience exists forever.
Gevin's words still carry a lot of weight for me, and regular readers of my blog will recognize how connected Gevin's ideas are to my own. If you'd like to buy a copy of Gevin's book, it's available at online book sellers, or I have it at my tenth dimension store. I also have a downloadable pdf version of it available at the tenth dimension digital items store. Profits from the sale of Gevin's book will go to the Gevin Giorbran Memorial Fund.
Enjoy the journey.
Rob Bryanton
Next: Polls Archive 47 - In Science, are Pictures More Important Than Mathematics?